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Discussion and extension Annexes C “Fracture Mechanics”  
 

Introduction 
This publication is part of compilation of work of the author to a total rigorous theory, 

containing the latest developments with goal of a thesis and book. The appended articles are 

mostly given in full as acknowledgment for the original journal publication.  

The developed exact theory is given in the appended publications denoted by “C”, thus: 

vdPut C(1990), C(2000), C(2007a,b), C(2011a,b), C(2012), C(2013), and C(2014). Other 

important derivations and applications are mentioned in these publications. The new theory 

in the appended publications and in this discussion is derived by T.A.C.M. van der Put, 

denoted by: vdPut in the Reference.  

 

Discussion of annexes C about Fracture Mechanics of wood  
 

1. Aspects of new theory, capita selecta  
The fracture determining initial cracks in wood are in the principal direction of elastic 

symmetry of the orthotropic material. When also the direction of crack propagation is 

collinear with these original cracks, then the fracture criteria of Griffith, Irwin, and 

Barenblatt are congruent and they can be applied directly to orthotropic plates. Thus at these 

conditions, the anisotropic fracture problem could be treated by the theory of fracture 

mechanics for isotropic materials. Because limit analysis applies, virtual displacements apply 

and solutions are independent of internal equilibrium systems, thus of initial stresses and 

previous loading histories. The high value of the fracture energy and energy release rate, with 

respect to the surface energy, shows that a high amount of plastic like dissipation is involved 

in fracture. Also the blunting at the top of the loading curve of test specimens, visible when 

the testing rig is stiff enough to allow the test to follow the theoretical softening curve, (the 

Griffith locus see C(2011a)), shows that there is a plastic range, which is extended enough to 

make any stress redistribution possible. This confirms that limit analysis has to be applied for 

the ultimate strength analysis to obtain always possible exact solutions. Limit analysis is 

based on an elastic-full plastic schematization of the loading curve (see Discussion of 

annexes D, section D1 for the theory). This means that in stress space, the flow criterion is a 

single curve and for “plastic” dissipation, the stress vector should be along (tangential to) the 

concave curve, and the strain vector should be perpendicular to the stress vector (normality 

rule) what means that the extremum (maximum) variational principle applies for “flow” and 

thus the virtual work equations apply and thus the theorems of limit analysis with the lower 

and upper bound solutions existing for any allowable equilibrium system, following as 

solution of the Airy-Stress function. Fracture of wood thus is a common boundary value 

problem of the strength at the crack boundary (or boundary of the fractured, plastic zone). 

This is derived in C(2011a), Chapter 2, and it appears that, for any load combination, fracture 

occurs by reaching the uniaxial tensile strength at the flat elliptical crack boundary near the 

crack tip. This uniaxial tensile stress is a measure of the cohesion strength and leads to the 

mixed mode Wu-equation, eq.(3), as exact solution, as well of the isotropic Airy stress 

function of the matrix stresses, as for the orthotropic Airy stress function of the total stresses. 

Only for mode I, is crack extension collinear. For shear, mode II loading, and for combined 

mode I and II loading, oblique crack extension is determining providing the lower bound 

solution. Also skipping across fibers (see Fig. 4) is a form of oblique crack extension. 

Contrarily to this, are all applied methods based on collinear crack propagation of the 

mathematical flat crack, thus based on the “singularity” approach, which is not able to 

represent the real, empirical verified, solution for mixed I-II mode fracture (see C(2014) for a 
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proof). The general  accepted singularity approach does not say anything about the local 

fracture mechanism and the singularity, with infinite fracture stress, does not exist. The 

center of a crack tip singularity, is an open space. For predicting strength and reliability and 

for a physical meaning, it is necessary to leave the non-existent singularity approach, which 

prevents a real description of the ultimate state. Removing a singularity always leads to new 

theory (see e.g. vdPut B(2011): A new theory of nucleation). Removing the singularity 

concept for black holes in Astronomy, provided many important new theories where 

thousands of scientist are working on. Leaving the singularity approach in fracture 

mechanics, provides the description of real behavior (see C(2007a), C(2011a) C(2011b), with 

the exact derivation of the mixed I-II mode Wu-equation C(2011a). This last derivation 

shows a much lower strength by oblique crack extension than at (displaced) collinear 

extension. The derived Wu-equation, applying for flat elliptic cracks, is:  
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For collinear crack extension, 0  , eq.(2) becomes the so called Wu-equation:. 
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Eq.(2) shows that for combined (mixed mode) fracture, when 0  , the apparent stress 

intensity factors of Irwin, cos( )IcK  , cos( )IIcK   are not constant, and thus are not material 

constants. The value of   depends on the loading according to eq.(4), for the isotropic 

matrix stresses:   
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For pure mode I: 0  , 0xy  , is IcK  equal to the Irwin value. For pure shear of the 

isotropic matrix is 0y   and 045   and is the stress intensity lower than the Irwin value, 

thus:  cos / 4 / 2 0.71IIc IIc IIcK K K    . This is e.g. measured (in: Eng. Frac. Mech. 78, 

16 (2011), Pages 2775-2788) according to Fig.1, for a relatively small initial crack length, in 

Agathis lumber, (density 480 ± 10 kg/m
3
; 12% m.c. 20 °C). The lumber had no defects, as  

 

  
Fig. 1. (see C(2011)) Fracture by pure shear loading by oblique crack extension at the 

uniaxial ultimate tensile stress (opening mode) near the crack tip in the asymmetric four point 

bending test with small center-slit. (Sketch after photo of test Eng. Fract. Mech. 2011; 78 - 

16: 2775-2788).  
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knots or grain distortions so that the specimens cut from it were small and clear”.   

Thus, according to the exact lower bound solution of limit analysis, is all fracture a matter of 

oblique crack extension by failure of the maximal uniaxial tensile stress (cohesion strength) 

at the crack tip boundary. The oblique angle by eq.(4) is indicated in Fig. 2. This oblique 

crack extension criterion has to be applied for clear wood as lower bound criterion.  

 
Fig.2. Uniaxial tensile failure at any  

 mixed I-II mode fracture. 

 

Real collinear shear crack extension does not exist, because the tensile stress is zero and there 

only is a shear stress and only high plastic shear sliding failure would be possible. However, 

a small crack extension mechanism is possible in the high stressed region near the crack tip 

and a displaced collinear crack extension is possible by tensile failure as indicated by fig. 3, 

where after oblique crack extension, small crack extension from the fractured  zone to the 

macro crack tip occurs, or a jump over fibres, as given by Fig. 4, is possible for wood, where 

separate small cracks extend by tensile failure. This has the same effect as macro-crack 

extension at a small value of  , and thus cos( ) 1  , and eq.(3) applies nearly precisely for 

timber. This is not only verified by the data of Wu, but also e.g. by the mixed mode fracture 

mechanics tests of Murphy et al, done at the TL-system on eastern red spruce at normal 

climate conditions using different kinds of test specimens. The usual finite element 

calculations provided the geometric correction factors, and the stress intensity factors and a 

lack of fit test was performed on the data, at the for wood usual variability, assuming five 

different failure equations. Statistical lack of fit values are tabulated in Table 1 below and as 

can be seen from that table, the one failure criterion, that cannot be rejected due to lack of fit, 

is the by Wu- equation, eq.(3), which also is shown to fit wood with small defects as failure 

criterion and is derived exactly in C(2011a) and is equal to the real solution.  

 

Table 1. Lack of fit values for arbitrary failure criteria  

Failure criterion 

 

p value 

 

/ 1I IcK K      0.0001  

/ / 1I Ic II IIcK K K K     0.0001  

 
2

/ / 1I Ic II IIcK K K K     0.5629 

 
2

/ / 1I Ic II IIcK K K K     0.0784 

   
2 2

/ / 1I Ic II IIcK K K K     0.0001  
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As directly appears from the mode II test, is the pure sliding mode of Irwin not existent, and 

is tensile failure, with opening mode, always the cause of any crack extension. In C(2012), 

§4, and below at Fig. 10, this is shown to apply for the standard mode II bending test.  

For small crack extension is collinear crack extension possible by interference of tensile 
 

 

 

 

 

Fig. 3 Crazing at the crack tip and possible   Fig. 4 Scheme of Wu, of crack extension by 

 crack extension along the fractured          skipping across fibers 

 zone in glassy polymers. 

 

stresses, causing tensile failure in the weakest plane (along the grain) as is given by Fig. 5, by 

small crack merging, where each small crack is propagating in the two directions towards the 

neighboring cracks. This is the principle of the small crack merging mechanism of C(2011a). 

 

 
 

Fig. 5. Collinear small crack merging.  

 

In C(2014), the exact derivation of the geometric correction factor of the center notched test 

specimen is given, based on small cracks merging as explanation of softening behavior.  

The failure criterion of clear wood and of timber (A(2009), A(1982a), and the failure 

criterion by a single macro notch (C(2011a), C(2014)), are the same, showing that small-

crack extension towards the macro-crack tip is the cause of macro-crack extension. This is 

confirmed by the fact that the stress intensity factor is the same independent on the macro-

form and dimensions of the notch. It also is confirmed by molecular deformation kinetics, 

showing the same processes in clear- and in notched wood (see discussion Annexes B). Also 

the exact solutions given in C(2014) of the geometric correction factor and of C(2012) of the 

strength behavior of long post-critical crack lengths is totally based on small crack behavior. 

The small-crack merging mechanism explains, in C(2011a), precisely the mode I softening 

curves of Boström (1992). The failure criterion A(2009) shows no coupling term between the 

normal stresses at “flow”, and thus shows no dowel action of the reinforcements and there 

only is a direct interaction of the reinforcement with the matrix and the matrix stresses 

determine the stresses in the reinforcements. Because the initial small cracks in wood are in 

the matrix and start to extend in the matrix, the stress equilibrium condition of the matrix by 

the matrix-stresses has to be regarded. The isotropic solution of the matrix stresses thus has 

to be regarded in the end state. The total stresses, due to the reinforcement, then follow by 

multiplication of an elastic constants factor (e.g. derived in Section 2 of C(2011a)).  

 

Contrarily to what is stated by Fig. 6, is all fracture mechanics nonlinear. However, the linear 

approach (LEFM) is always applicable and is exact in the form of limit analysis which is 

based on the linear-full plastic schematization of the loading curve. The full-plastic zone is 

given by a single curve in stress space as shown in Fig. 6. In Fig. 6 is d/d0, the ratio of 

specimen size to the fracture process zone size. But, because the volume effect is tested, is 

the initial crack length proportional to the specimen length. Thus, 0/d d  also can be regarded 

to be the ratio initial open crack length to the process zone size. Then, for small values of d , 
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this 0/d d ratio also may represent the 

critical small crack density in a macro 

specimen (d also is crack interspace). 

The curved line of fig. 6, follows the 

equation: 

 0 0ln ln 0.5ln 1 /d d      

This can be written: 
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showing the curve to represent the . 

stress intensity as ultimate state with 

cK  as critical  stress intensity factor. 

Fig. 6. from: “Fracture and Fatigue in Wood” of  It further is shown that for values of  

        I.Smith et al showing wrong interpretations. 0/d d >>1, the curved line approaches 

 the drawn straight tangent line 
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This slope is: – 0.5 for 0d d  and this slope is zero when 0d  . 

This shows that for the whole curve LEFM (linear elastic fracture mechanics) applies and it 

is an indication that, at zero dimensions, thus zero d = 0, the strength theory still follows 

LEFM, because it applies also for initial length 0d . The strength theory applies for ultimate 

high loaded areas according the small crack merging mechanism, when the critical small 

crack density is reached. This means that the small crack spacing is about the small crack 

length (see C(2011a), section 3.6) and this applies for any initial small crack length 0d d .  

However, when 0d  is of the order of d , the crack length and thus the crack spacing, there 

only is plastic flow in the intact ligament material. For wood this is determining for very 

small specimens, or for small loaded areas. For instance, the maximal bending tension stress 

occurs at one point and thus maximal bending tension occurs at a small area and will be 

plastic. For wood loaded in bending and compression therefor is the ratio bending tension to 

bending compression , /m t cs f f  constant (and thus both plastic), as shown in D(2012b), for 

any load combination of bending with compression, indicating also that there always is 

failure by the ultimate bending tensile strength. A volume effect by stress distribution thus 

needs not to be regarded. The volume effect thus now is caused by the volume alone due to 

decreasing quality by volume increase (For that reason also the compression strength may 

show a volume effect).  

 

Because, as mentioned before, the isotropic matrix “flows”, before the reinforcement, limit 

analysis has to be applied for the isotropic stresses in the isotropic matrix. This is not 

followed by all other methods, which therefore don’t satisfy the failure criterion and are not 

able to give the right exact mixed mode fracture criterion. At initial flow of the matrix, the 
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stresses of the still elastic reinforcement follow in proportion the matrix stresses. That the 

matrix is first determining follows e.g. for Balsa wood, which is highly orthotropic, but is 

light, thus has a low reinforcement content and shows total failure soon after matrix failure 

and thus shows at failure the isotropic ratio of / 2IIc IcK K   of the isotropic matrix material. 

But also for strong clear wood which is failing by shear by single oblique crack extension 

according to Fig. 3, it appears that the start of crack extension shows the isotropic oblique 

angle, showing the matrix to be determining for initial failure. The truss action, at bending 

failure of a beam, causes a negative contraction coefficient in the bending tension zone. This 

shows that the reinforcement holds, even after flow in compression and stress redistribution, 

with increased tension in the reinforcement. It is therefore a requirement for an exact 

orthotropic solution of the total applied stress, applicable to wood, to also satisfy the isotropic 

flow solution of the matrix-stresses.  

As discussed at Annexes A, the (small crack) failure criterion for shear with tension is: 
2 2 2
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This becomes, as limit behavior, equal to the Wu-equation when due to full hardening 1c .  

Full hardening is possible when the test rig is stiff enough to remain stable during test. The 

solution of the crack problem of Irwin as summation of in plane and antiplane solutions in 

order to use, (with minor adaptions) isotropic stress functions for the orthotropic case, and to 

apply descriptions in the three characteristic modes and to sum the result for the general 

mixed mode case is not right for wood, because the failure equation is not orthotropic, eq.(5) 

is not quadratic but contains a third order term and thus is not orthotropic symmetric. This 

coupling term is absent in the general accepted Sih-, Paris-, Irwin solution. The stress 

function which leads directly to the Wu-equation is known and given in C(2011a), § 2.3.  

 

The Griffith strength equation, based on virtual crack extension, eq.(3.8) of C(2011a): 
2 /y c yG E c         (7) 

can be extended by superposition to:  
2 2 /y xy c yG E c           (8) 

This exact law, only can be right, when cG  is not a material 

constant but is a function of y  and xy , because cG  varies 

between IcG  and IIcG   

In orthotropic stresses, is eq.(8):  
2 2 2

6/ /y xy f yn G E c     (see C(2011a)) 

The reason that cG  in eq.(8) is variable follows from the global 

stresses (stresses ad infinitum), which are not based on the local  

Fig.7.Center notched   stresses at the crack tip. Therefore cG  in eq.(8) can be IcG ,  

     mode I specimen  because also elastic shear stress can be dissipated at a mode I  

 fracture. Necessary thus are the stresses at the crack boundary to 

know the mode of failure. This follows from the exact derivation in C(2011a) and is applied 

by the virtual crack closure technique of finite element simulation, but is based on a separate 

calculation of the energy release rates of the normal stress in the opening mode and of the 

shear stress in the sliding mode following the method of Sih, Paris, Irwin by giving the sum 

of separate solutions for the 3 modes, without interactions, what is assumed to be possible by 

assumed isotropic and orthotropic symmetry. This however is against eq.(5) because the  
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Fig. 8. Eq.(5), influence of 2

266 2 63F   ,    Fig. 9: Also same hardening at compression to  

    with the dashed parabolic limit   parabolic data outside the elliptic curve 

     line of eq.(6)    (due to slip line formation). 

   

coupling between work by normal and by shear stresses, as given by 2

266 2 63F    in eq.(5), is 

not present in the existing methods and “mixed mode” interactions as given by Fig. 8 and 9 

can not be described by other methods as e.g. of Sih, Paris and Irwin.  

 

Figure 10 explains why, in the mode II standard test, under shear loading, not a sliding mode 

II, but an opening mode I tensile failure occurs. 

 
Fig. 10. Fracture loading of the single end notch beam 

 

In Fig. 10, the ‘‘mode II’’ test is represented by case a + aꞌꞌ. If the sign of the lower reaction 

force V of this case is reversed and P = 0, the loading of the mode I, double cantilever beam 

(DCB) test is obtained, identical to loading case c with N = 0. In Fig. 10, case a + aꞌꞌ is split 

in case a and in case aꞌꞌ, as loading of the upper and the lower cantilever. Case a is identical 

to case aꞌ which is similar to end-notched beams discussed in C(2011a), Chapter 6. This case 

behaves like the mode I fracture test as can be seen by loading case c. The loading near the 

crack tip, given by case a, can be seen as the result of superposition of the stresses of cases b 

and c, where the loading of case b is such, that the un-cracked state of the beam, case bꞌ, 

occurs. The loading of case c is such that the sum of cases b and c gives loading case a. Case 

c is the real crack problem and the critical value of strain energy release rate cG  can be found 

by calculating the differences of elastic strain energies between case aꞌ and bꞌ, the cracked 

and un-cracked system C(2011a). Case c shows the loading of the mode I – DCB-test by V 

and M, combined with shear loading by N and the energy release rate thus will be somewhat 

smaller (by this combination with N) than the value of the puce DCB-test. 

For the loading case aꞌꞌ, the same stresses occur as in case a, however with opposite 

directions of M and V with respect to those of case c, according to case cꞌꞌ , causing crack 
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closure. To prevent that crack closure cꞌꞌ , and friction, dominates above crack opening c, the 

crack slit has to be filled with a Teflon sheet. By superposition of cases c and cꞌꞌ , case  

c + cꞌꞌ of shear loading of pure mode II occurs, as crack problem due to the total loading. The 

normal load couple of 2N is just the amount to close the horizontal shift of both beam ends 

with respect to each other at that loading stage. This explains the applicability of the virtual 

crack closure technique. 

Because the upper cantilever is stronger for shear than the lower cantilever, because of higher 

compression perpendicular and along the grain (see Fig. 8), mechanism c will dominate 

above cꞌꞌ, when the lower cantilever start to flow in shear. Thus mode I, case c tensile failure 

occurs.  

 

2. Softening behavior and correction of the fracture energy C(2007a)  
When crack extension occurs in a cantilever beam loaded by a constant load P at the free end, 

then the load gets a deflection   due to this crack extension, then the work done on the beam 

is P   and the work for the elastic strain increase is: / 2P  . Then the work for crack 

extension is P   - / 2P   = / 2P  , thus equal to the elastic work of strain increase.  

Therefore is the area under the load-displacement softening curve the total external work on 

the test specimen and not the fracture energy. The fracture energy follows from half this area 

what is equal to the critical strain energy release rate at the first crack increment. For wood 

this correctly is applied for mode II. See Fig. 11 below, where the elastic part of stored 

energy is subtracted from the total applied energy of the loading curve to get the right 

fracture energy. For mode I however, as for other materials, wrongly the total area is 

regarded as fracture energy, thus a factor 2 too high, as shown in C(2007a). Softening of a 

real stress on intact material does not exist. The softening stress is a nominal stress and thus a 

measure of the stress outside the fracture plane. In the fracture plane acts the mean ultimate 

failure stress. The measurements at softening may show an apparent decrease of the specific 

fracture energy C(2011a) when related to one extending crack. This can be explained by a 

multi small crack joining mechanism when the critical; small crack density is reached, thus 

the ultimate state of the remaining intact ligament length of the test-specimen. Post fracture 

behavior thus is not comparable with the behavior of macro crack initiation. It further is 

shown, by the kinetics of the process, that the irreversible work of an ultimate loading cycle 

is proportional to the activation energy of the fracture process and not to the driving force of 

the process. This explains why the crack velocity decreases with the increase of this 

irreversible work, and increases with the stress 

intensity increase.  
The fracture energy is a function of the Griffith 

strength and thus is related to the effective width of 

the test specimen and not to the ligament length. This 

also has to be corrected. Based on the derivation of 

the softening curve, the in Boström (1992), reported 

fracture toughness of 720 kNm, of double-edge 

notched tests, is corrected to 330 kNm and the value 

of 467 kNm , based on the fracture energy, of the 

compact tension tests, also is corrected to the right 

value of 330 kNm . A revision of published 

Fig.11.Mode II fracture energy  mode I data, based on the fracture energy obtained  

           book of I. Smith et al   by the area under the softening curve, thus is 

 necessary.  

The concluding final theory is given in C(2007a).  
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Fig 12. Stress- displacement   Fig 13. Descending branch 

of specimen Fig. 7 of Fig.12. 

 

In the elastic-full plastic schematization of limit design is, in Fig. 12, the area OAB, written 

here as OABA , the strain energy of the specimen of Fig. 7, with a central crack (or with two 

side cracks) with a width “b”, length “l” and thickness “t”, loaded to the stress  . During the 

quasi static crack extension from B to D, in Figure 12, the constant external load   does the 

work on the specimen of: BD BDb t l b t            ABDCA  , where BD   is the strain 

increase due to the cracking and BD  the corresponding displacement. The strain energy after 

the crack extension is OCDA   and the strain energy increase by the crack extension thus is in 

Fig. 12: OCDA  - OABA  = OCDA  - OCBA  = CBDA  = / 2ABDCA . Thus half of the external energy  

/ 2ABDC BDA b t      is the amount of increase of the strain energy due to the elongation by 

 , and the other half thus is the fracture energy which is equal to this increase of strain 

energy. The same follows at unloading at yield drop. Because every point of the softening 

curve gives the Griffith strength, which decreases with increasing crack length, unloading is 

necessary to maintain equilibrium. The fracture with unloading step AC in Fig. 13 is 

energetic equivalent to the unloading steps AE and FC and the fracturing step EF at constant 

stress EB = FD = (AB + DC)/2. Thus ABDCA  = EBDFA , Identical to the first case of Fig. 12, the 

increase in strain energy due to crack extension is: 

0.5 0.5ODF OBE ODF OBF BFD EBDF ABDCA A A A A A A        , equal to half the work done by 

the external stresses during crack propagation and thus also equal to the other half, the work 

of crack extension. It thus is shown that half the area under the load-displacement curve 

represents the fracture energy. For mode II, only line OACO in Fig. 12 is measured and 

OACA  is regarded to be the fracture energy (see Fig. 11). Because 0.5OAC BAC ABDCA A A   , 

thus equal to half the area under the load displacement curve, the right value is measured and 

mode II data need no correction.  

 

3. Weibull size effect in fracture mechanics of wide angle notched beams  
A new explanation is given in chapter 9 of C(2011a) of the strength of wide angled notched 

timber beams by accounting for a Weibull type size effect in fracture mechanics. The 

strength of wood is described by the probability of critical initial small crack lengths. This 

effect is opposed by toughening by the probability of having a less critical crack tip 

curvature. The toughening effect dominates at the different wide angle notched beams 

showing different high stressed areas and thus different influences of the volume effect.  

The explanation by the Weibull effect implicates the determining small crack extension,  
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4. Discussion of Cohesive zone models  
Nearly all assumptions of the cohesive zone models are against theory. The most 

fundamental violence is to regard the stress of the softening curve, which is a nominal stress, 

thus, a stress far outside the 

fracture plane, to be the stress 

in the fracture plane (the 

ligament), while the real 

stress shows hardening in 

stead of softening and thus 

shows no impossible negative 

dissipation and stiffness. The 

aim of the cohesive zone 

model was to remove infinite 

tensile stresses of the 

singularity method, by 

substitution of an internal 

compressional equilibrium 

system which neutralizes the 

singularity. However, this 

superposition of closing 

stresses is superfluous 

because the singularity does 

not exist and the singularity 

solution, or mathematical flat 

crack solution, also is an  

Fig. 14. of Fracture mechanics book of I. Smith et al  approximation. The  

  singularity is an empty space 

within the crack boundaries and there thus is no material which can be stressed infinitely 

high. The crack problem thus is a common limit analysis boundary value problem at the 

crack boundary, or better, at the elastic-plastic boundary of the plastic and fractured zone 

around the crack and crack tip. All kinds of dissipation within this boundary determines the 

fracture energy (= energy release rate). The exact solution of the Airy stress function is given 

in e.g. C(2011a), showing that fracture always occurs by reaching the uniaxial ultimate, 

tensile stress (cohesion strength) near the crack tip, what leads to the parabolic Wu-mixed 

mode initial failure criterion, eq.(1), which thus is the exact criterion, is in accordance with 

the measurements of precise tests (of Wu and Murphy). By this solution (of C(2011a)), the 

real “traction stresses” near the crack tip are known and it is not necessary to assume an 

arbitrary impossible system with negative dissipation and negative spring constants. In Fig. 

14, the assumed internal compressional equilibrium system is given, which follows from the, 

by gage 2 measured, unloading of the specimen, what wrongly is assumed to represent a 

crack opening law, (with negative spring constant). The real fracture energy, follows from 

the total external applied load, and thus the total elastic deformation increase of the whole 

specimen has to be measured. Measuring deformation over a crack opening has no meaning 

because it is not known what is measured. The local stress decrease by local unloading is no 

measure of the increase of stress in the remaining intact ligament. In Fig. 15, the stress and 

strain at the points A are zero, due to the unloaded triangles adjacent to the crack, and the 

crack opening will be proportional to the crack length a  by unloading, and is not related to 

the constant mean ultimate stress of the remaining intact ligament. The area under the load – 

total displacement curve determines the total applied external work on the specimen. Half of 

this area is the elastic strain increase and the other half is the fracture energy (= equal to the 
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elastic energy increase). The cohesive zone model 

regards the total area, thus the total external energy as 

fracture energy, thus a factor 2 too high (see Section 2). 

Further is this energy wrongly related to the area of the 

crack length increase instead of to the total crack length 

area, including the initial crack length. By doing so, the 

fracture energy per unit area (which should be equal to 

the energy release rate) is not a material constant but 

depends on the chosen initial crack length. Further, the 

total measured energy has to be divided among the 

different acting processes. The activation energy tells 

which process is the fracture process. The cohesive zone 

model does not account for this result of the exact theory 

of molecular deformation kinetics, (see B(1989a)). This  

theory also explains why softening only is possible in a 

Fig. 15 Nonsense data  constant strain rate test and is not possible in a constant 

 loading rate test and in a dead load test to failure. 

Because in practice only dead load failure occurs, is it astonishing that impossible softening 

is regarded as traction law instead of the elastic-plastic diagram of dead load loading. A 

severe lack of distinction of acting kinetic flow processes is made by the cohesive zone 

model of dowel connections in wood. Most investigations on connections are with one- or a 

few dowels, where the dowel is determining for initial “flow”. This applies especially for the 

in practice applied slender dowels, thus up to connections with 9 to 12 nails. Then the dowel 

is determining for initial failure and splitting of the beam occurs at flow and hardening of the 

embedment, because the dowel performs a crack opening movement at embedment failure. 

Thus the spreading effect of the embedment strength of the dowel, then determines the 

splitting strength of the joint. The tri-axial compressional hardening effect of the dowel 

embedment should be accounted in the models. The exact derivation, as boundary value 

solution, based on the shear-line (called slip-line) construction, of the embedding strength is 

given in vdPut D(2008b), with the simplification to the simple spreading model. In the 2D 

cohesive zone model for dowel-connections of Franke (see Fig. 16) is the measured triaxial 

compressional hardening regarded to be a tensional hardening leading to random results, with 

an extreme high variability, and a statistical exclusion of fit to any equation. The cohesive 

zone model behavior is too far away from real 

behavior thus according to exact theory. The 

reason of this mismatch lies in the method 

itself because nearly all model assumptions 

made are strongly against exact theory and 

generally against thermodynamics and even 

the tensile strength is not ultimate but variable 

down to zero (called cohesive forces). Strain 

softening in this case cannot exist and is not 

measured. The Griffith stress of e.g. the center 

notched specimen is /g cG E a  .  

This is a nominal stress, thus is occurring in  

Fig. 16. Failure according to cohesive  the intact elastic part of the specimen, far  

              zone model   outside the fracture plane, (the stress ad  

  infinitum) and is not the real failure stress. 

The real mean stress in the fracture plane, the still intact ligament, is a factor / ( 2 )b b a  
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higher and is an increasing stress: ( / ) / (1 2 / )gr cG E a a b    increasing with the increase 

of the crack length a  (see C(2011a), eq.3.10). It is thus necessary to speak of hardening 

because the stress in the critical section increases at crack extension (until a maximum 

value).  

 

The by some cohesive zone models applied “delamination test”, to determine the traction 

force, should be in accordance with exact theory. The calculation is as follows, according to 

Fig.17: The deformation   of the upper plus the lower cantilever parts of the beam of  

figure 17 is: 
3 3(8 ) / ( )Pa Ebh   and thus is the compliance: 

3 3(8 ) / ( )C a Ebh  and the energy release rate: 
2( / 2 )( / )cG F b dC da  2 2 2 3(12 ) / ( )F a Eb h  

and accounting also for the shear deformation as in 

C(2011a), sections 6 and 7, cG  becomes: 

Fig. 17. Delamination test   2 2 2 2(12 / ) ( / ) ( /10 )cG F Eb h a h E G     Thus:   

 
 

De strain energy release rate G is: 

21

2

dC
G P

b da
   

3
2 2

3

1 1 8

2 2

dC d a
G P P

b da b da Ebh


  

 
  

    
2 2

2 3

12P a

Eb h
        (9) 

or when shear deformation is 

included this becomes: 

Fig. 18. Empirical confirmation of theory  
2 2

/

12 / 1.2 /

cEG hF

bh a h E G



       (10) 

At the start is the term 1.2 /E G  dominating, giving an ultimate shear stress criterion:  

(2 / 3) 1.2

c
v

F GG
f

bh h
    

For very long cracks is possible:  

/12

/

cEG hF

bh a h
  or 

2

3

/ 6

c
m

Fa EG
f

bh h
  , giving the “traction stress” of cohesive zone 

model, now based on positive stiffness and dissipation. At a constant strain rate test, also the 
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rate of crack extension is constant. The requirement 1F a C   =  constant, is needed for a 

constant bending strength. The external loading F has to diminish at increase of crack-length 

a , which acts as increase of the lever arm, in order to have a constant traction at the crack tip 

of the constant cohesive tensile stress, for a constant value of the fracture energy cG . Thus 

there is unloading of F and no softening of the strength in the fracture plane, but a constant 

critical ultimate stress in the critical zone.  

At the end stage of crack extension, the remaining future crack plane is high loaded and 

shows additional damage, by micro-crack extension and merging, to- and outside the macro-

crack tip, causing an apparent decrease of cG  (when this is related to one macro-crack 

extension alone). Again this is not a real decrease of cG , but a more efficient use of fracture 

energy (vdPut C(2011a)). Thus; the term “softening “ has to be replaced by “elastic 

unloading” (applying for this stress at infinitum, outside the fracture plane).  

 

The confirmation of theory by data is not done in the right way by Fig. 18. First the 

theoretical derivation of the dashed loading curve should be given (as done in C(2011a), 

section 3.3) and then the curve should be fit to the data (without need of negative dissipation 

and negative stiffness). Then is it possible to notice the departure from theory by multiple 

small crack propagation in the end state of the test, when the remaining, still intact, ligament 

is high loaded (see section 3.6 of C(2011a)).   

 

5. The energy approach of fracture of beams by joints loaded 

perpendicular to grain  
The derivation, based on the compliance method of fracture mechanics, is given in C(2011a) 

and will be discussed further. The apparent brittle failure of fracture mechanics tests is due to 

instability by too low stiffness of specimens and testing equipment. The testing of Boström 

(1992), at sufficient stiffness to follow the theoretical softening curve, shows sufficient 

plasticity near and at the rounded top for total stress redistribution. This means that limit 

analysis has to be applied for the ultimate strength analysis providing always possible exact 

solutions. Because the extremum, (the ultimate value), is not dependent on the followed 

loading path, the analysis can be based on an elastic-full plastic schematization of the loading 

curve. This means that the full plastic flow criterion is a single curve in stress space and for 

“plastic” dissipation, the stress vector should be along (tangential to) the concave curve, and 

the strain vector should be perpendicular to the stress (normality rule) what means that the 

(maximum) extremum variational principle applies for “flow” and thus the virtual work 

equations apply and thus the theorems of limit analysis, with the lower and upper bound 

solutions, applying for any allowable equilibrium system, (e.g. following as solution of the 

Airy-Stress function). In these virtual first order calculations of small changes, the strength 

is, except the independence of the loading path, also not dependent on initial stress and 

internal equilibrium systems. It therefore is necessary to apply common beam theory, as 

small, first expanded, behavior, which can be regarded to differ an internal equilibrium 

system from the real stress state. This also can be stated as follows: Because an internal 

equilibrium system has no influence on the ultimate strength, the differences of the potential 

energy of this system, of the cracked, and the un-cracked, intact state, should not be 

accounted and only the first order term has to be regarded. Also lower order effects, as 

clamping action and lower order bending terms have to be omitted for the highest lower 

bound solution. Thus the beam theory has to be applied solely for the right solution (and thus 

forget the upper bound finite element calculation). This is applied here for the tested beams 

of C(2000), thus for a connection at the middle of a beam, to find the compliance difference 

between the cracked and intact state as follows (see Fig.19).  
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The part above the crack (stiffness  
3 3

2 1 /12 I b h ) carries a moment 3M  and normal 

force N and the part below the crack (stiffness 
3 3

1 /12I b h ) carries a moment 1M , normal 

force N and a shear force V. and at the end of the crack a negative moment of about: 

2 1 M M . Further is 2 1  M M V , thus 1 / 2M V . 

 

The deformation of beam 2 of the 

cracked part βh is equal to the un-

cracked deformation un  of that part 

and the deformation of beam 1 is un  

plus the crack opening   (see Figure 19 

and 20) and δ is   
2 2

1

1 1

1 2 1

2 3 2

V M

EI EI

 
        

3 3

1 1

1 1

3 4

V V

EI EI

 
      

Fig. 19. Beam with crack by the dowel  

3 3

3

1

1

12

V V

EI bE

 


      (11) 

The deflection difference of the cracked and un-cracked state, including shear, is total:  

1.2  




 
   

 

h h
V

G b h bh
+ 

3

3





V

bE
    (12) 

The condition of equilibrium at crack length β is:  

 / 2 / 0      cV G b h  or:    2/ / / 2     cV V G bh   

or: c
f

2G bh
V

( / V)


 



                         (13) 

where cG  is the fracture energy. It follows from eq.(12) that:  

  2

3

/ 1.2 1 3
1

 

  

  
   

  

V

bG Eb
       (14) 

and eq.(13) becomes: 

  2

/

0.6 1 1.5 / ( )


   


 

c
f

GG h
V b h

G E
   (15) 

giving, for the always relatively small values of β, 

the previous for end-notches found equation: 

/

0.6 (1 )  


  

f c
V GG h

b h
                              (16)  

(see C(1990)) which thus also applies for notched 

beams and for end-joints and verifies the lower 

bound of the strength, predicted by the theory. 

Fig. 20. Statics of half the crack. This shows that only work by shear stress 

 contributes to mode I fracture (elastic shear stress 
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dissipation). This linear elastic fracture mechanics derivation is not enough because design 

should be based on “flow “ of the joint (embedment flow) before splitting of the beam and 

the interaction of joint failure and beam splitting has to be regarded. Because plastic flow of 

the dowel also causes crack opening, splitting also occurs as secondary failure after 

hardening of the dowel strength. By the finite element empirics, this splitting is regarded as 

the ultimate strength state of the connection. This means that a huge hardening for one- and 

two dowel joints is accepted and hardly any hardening as final state for multi dowel 

connections and a difference in strength definition of every dowel is accepted.   

For the new definition of the strength of the connection, as splitting strength the derivation 

has to be adopted as follows:  

When crack extension starts of a cantilever beam loaded by a constant load V, giving a 

deflection increase of δ at V due to this crack extension, then the applied external energy to 

the beam is V∙δ. The energy balance equation then is:  

/ 2   cV V E     (17)  

where / 2V  is the increase of the elastic energy and cE  the energy of crack extension.  

Thus: / 2cE V     (18)  

Thus the energy of crack extension is equal to the increase of elastic energy. 

Eq.(18) also can be written with de incremental deflection δ = du: 
2

cE V d(u/V)/2 fG bh d ( ) or: 

2

( / ) / 


 

fG bh
V

u V
    (19)  

where fG is the fracture energy per unit crack surface and “bhd(β)” the crack surface 

increase with “b” as width and “h” the height of the beam with a crack length l = βh. 

When the load on the cantilever beam, mentioned above, is prevented to move, the energy 

balance, eq.(17) becomes:  

0  e cE E , or: / 2   c eE E V    (20)  

for the same crack length and now the energy of crack extension is equal to the decrease of 

elastic energy in the beam. 

When the joint at load V becomes determining and just start to flow at 1  when splitting of 

the beam occurs, (design value of equal strength of joint and beam), then eq.(17) becomes:  

1 1=( ) / 2 ( ) cV V V E           (21)  

where again 1 / 2V  is the increase of the elastic energy and 1( ) V  the plastic energy of 

the flow of the joint. From eq.(21) then follows: 

1 / 2cE V    (22)  

the same as eq.(18)..  

For dowel connections, plastic deformation in the last case will not yet occur because it is 

coupled with crack extension. When the dowels of the joint are pressed into the wood, the 

crack opening increases and thus also crack extension. It can be seen in eq.(21), that when 

flow occurs, the total applied external energy Vδ is used for plastic deformation. This is a 

comparable situation as given by eq.(20), and the at the plastic flow coupled crack extension 

will cause a decrease of the elastic energy. Eq.(21) thus for joints is:  

1 2 1V = (V ) / 2 ( )          sV E     (23)  

where 2 / 2V  is the decrease of the elastic energy by the part of crack extension due to the 

plastic deformation. From eq.(23) now follows:  

1 2( ) / 2  sE V     (24)  
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and eq.(19) becomes: 

1 2

2

(( ) / ) / 


  

fG bh
V

u u V
    (25)  

From eq.(22) and (24) follows that 1 1 2( )   c cV V , where 1c cV  is the amount when the 

connection is as strong as the beam (according to eq.(21). Thus: 

1 2

1

 




 c

c

V

V
  c n c

n

n V n

nV n
    (26) 

where nV  is the ultimate load of the dowel at flow and n the number of dowels.  

Substitution of eq.(26) into eq.(25) gives: 

1

2

( / ) / 
 

 

f

c c

G bh n
V

u V n
    (27) 

what is equal to / cn n  times the strength according to eq.(19) for 1 cu u , thus / cn n  

times the splitting strength of the beam as is applied in C(2000),  

According to eq.(23), the theoretical lower bound of V according to eq.(27) occurs at 1 2  , 

Thus when / cn n  = 1/2. In C(2000), the empirical value of 0.5 to 0.4 is mentioned according 

to the data giving:  

1 1

2 2
0,45 0.67

( / ) / ( / ) /

f f

c c

G bh G bh
V

u V u V 
   

   
    (28)  

This requirement for “flow” of the joint at failure: fGG = 0,67∙18 = 12 
1.5Nmm

 is 

included in the Eurocode (see § 7.1 of C(2000)). 

The condition 1 2   means that there is sufficient elastic energy for total unloading and 

thus full crack extension with sufficient external work for plastic dissipation by the joints. 

According to eq.(23) is for that case:  

1cE V     (29) 

 

Because, for real safety, thus for the by law demanded, calculable reliability, design has to be 

based on theory, and not on intrinsic not general empirical rules, (as e.g. of Ehlbeck at all 

(1989)), the precise, theoretical exact rules, derived in vd Put C(1990), were accepted in 

Building Regulations in 1990. For the first time then was shown, and accepted, that fracture 

mechanics has to be applied for exact design of joints loaded perpendicular to grain. Ten 

years later, the theoretical design equations were adapted for the allowed, prolonged plastic 

embedment flow of dowels, in C(2000), according to the new vision of CIB-W18, that 

splitting failure of joints should be prevented by separate design rules. The theoretical, and 

thus precisely fit rules above remain necessary for strength calculation. However to prevent 

splitting is, as Eurocode 5 design rule, explicitly prescribed that dowel failure, has to be 

below the, theoretical and empirical confirmed, lowest possible splitting strength.  

Just see also C(2014b), to notice that, in contrast with Fig. 16, the given numerical data (of 

LVL) fit to the theory with a COV of 10 %. Also even the rigorously simplified design 

equations of vdPut C(1990) are precise enough for all given data at that time. In C(2000) the 

derived theoretical lowest splitting force of 0.67 times the maximal value is verified by all 

joint types of Ehlbeck et al (1989). Clearly the COV of 10% confirms empirically the exact 

approach because this can not be improved by any other method.  

In C(2000), the full derivation of the / cn n  -factor of the Compliance method was not 
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given. By error all appendices with theory were left out. The article was delivered as Atari-

file what is not compatible with Word and the article was retyped by the co-author, what 

caused many errors. Also a new data-fit was done, leading then to a worse fit. The reason is 

probably that the co-author uses the theory equations in his further publications as if they are 

empirical equations (which should not fit precisely to the data) to compare these with the 

always solely empirical equations of other publications. This comparison of arbitrary fitting 

is the only possible level of communication due to the censorship of exact theory discussion 

in CIB-W18. Due to this censorship criticism on exact theory is freely possible, even any 

nonsense is publishable, but defense on such comment is prohibited, because defense would 

contain a proof based on exact theory what is prohibited and thus censored. As example of 

such comments of the in this Section discussed theory, (see C(2000)) for joints loaded 

perpendicular to grain, for which it was decided by Larsen and members of the Eurocode 5 

Committee and agreed by the CIB-W18 conference, to prescribe, in Eurocode 5, always 

determining dowel failure below the lowest splitting boundary, where below there is not 

enough energy for total splitting, the following: This simple, by everyone chosen, lower 

splitting boundary, is by nearly everybody regarded to be the mean splitting strength to make 

a cheap rejection possible. The mean strength equation which fits precisely to all known data 

of these type of joints is eq.(1a) or Eq.(27):  

  2

/

0.6 1 1.5 / ( )

c
f

c

GG h n
V b h

G E n


   
 

 
     (1a) 

The lower boundary occurs theoretically when  0.5 cn n , but according to the data of 

Ehlbeck (1989) is this lower boundary about: 0.45 cn n . Thus the lowest value of: 

/ 0.45 0.67cn n   . 

Eq.(1a) contains the influence of initial crack length of 2 h . The influence of the initial 

crack length is extensively discussed in vdPut C(1990). The dowel deformation determines 

the initial crack-length increase. It appears that the term with   is small in eq.(1a) and even 

negligible, leading to:.  

/

0.6 (1 )

f c

c

V GG h n

b h n  
 

  
        (2a) 

There is no significant better fit of eq.(1a) with respect to eq.(2a). Eq.(2a) can be regarded as 

the highest lower bound of fV  and thus the closest to the real solution, which thus applies for 

the lowest possible initial crack lengths. The maximal value of eq.(2a) for under-designed 

( cn n ) dowel strength capacity, eq.(3a):  

/

0.6 (1 )

f c
V GG h

b h  
 

  
       (3a) 

is the reason why Jensen suggest the theory to be not right because it only is based on shear 

strength with a zero initial crack length. (The fact that elastic shear stress dissipation 

determines mode I fracture has nothing to do with failure of the beam by shear loading).  

Based on the data of Ehlbeck et al (1989) is the mean value of 18cGG  N/mm
1.5

 and the 

lowest splitting force, when / 0.67cn n  , is: 0.67 18 12cGG    , Thus: 

/ 0.6 15.5cGG   N/mm
1.5

. The characteristic value, to be chosen by the Code committee 

should be in the order of 15.5 2 / 3 10   N/mm
1.5

, giving:  

10 / (1 / )f e eV b h h h          (4a) 
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The dowels should be dimensioned in such way that embedment flow occurs at this value of 

the splitting strength (according to CIB-W18 and the Code committee).  

Eq.(4a) is now a grateful equation to reject theory, by wrongly comparison with the empirical 

mean strength in CIB-W18 papers. Therefore everyone  

1) left out the factor / cn n  when regarding mean strength. Only Leijten (2001) had no 

negative conclusion, indicating the right use oe eq.(4a) as lowest value for splitting.  

2) Ballerini (2004): did not remember the rule he voted for, and stated (by looking only at 

eq.(4a)), that the design formula neglects any influence of the connection geometry, although 

this is estimated by exact theory, given by eq.(1a), and, he clearly did not remember, that not 

splitting, but always initial dowel failure, is determining and thus that the dowel geometry is 

perfectly present and accounted.  

3) By Franke en Quenville (2010) the same error is made. Their given empirical numerical 

data and later data (e.g. LVL of Fig. 16) are analyzed in C(2014b showing that the theoretical 

formula (2a) fits to their data precisely with a COV of 10 %  Thus clearly is demonstrated 

that the initial crack length   term is not needed in eq.(1a) for precise design.  

4) Jensen (2012) CIB-W18/45-7-2, Also does not know that initial failure is by the dowels 

showing a perfect dowel geometry. He mentioned the zero initial crack length, showing he 

did not noticed eq.(1a), but, his (2003) publication shows that he, as only one, noticed that 

the strength equation (3a) exists, by stating that it is based on shear stress only with zero 

initial crack length. However he does not know that this elastic shear stress dissipation for 

mode I failure, has nothing to do with shear failure of the beam. A better conclusion would 

have been that clearly the critical distortional energy principle (derived in A(2009)) always 

applies. Thus design of joints should be according to the lower bound equilibrium method 

regarding equilibrium of all involving parts and can not be given in design rules only.  
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